Power Series

Definition A Power Series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$$

where x is a variable, the c_n 's are constants called the coefficients of the series. **Example** We already know a lot about the power series $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$

- ▶ When x = 0, this power series is the series $\sum_{n=0}^{\infty} 0^n = 1 + 0 + 0 + ...$ which converges to 1.
- ▶ When $x = \frac{1}{4}$, this power series becomes $\sum_{n=0}^{\infty} \frac{1}{4^n} = 1 + \frac{1}{4} + \frac{1}{4^2} + \dots$ which converges to $\frac{1}{1-1/4} = 4/3$.
- When x = 2, this power series becomes ∑_{n=0}[∞] 2ⁿ = 1 + 2 + 2² + ... which diverges since it is a geometric series with r = 2 > 1.
- We see that a power series can converge for some values of x and diverge for others.
- ▶ In this case the series $\sum_{n=0}^{\infty} x^n$ converges if |x| < 1 and diverges if $|x| \ge 1$, since it is a geometric series with r = x.

Example: $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$

Example Lets see what we can say about the power series

$$\sum_{n=0}^{\infty} \frac{x^n}{2^n} = 1 + \frac{x}{2} + \frac{x^2}{2^2} + \frac{x^3}{2^3} + \dots$$

- When x = 0, this power series is the series $\sum_{n=0}^{\infty} 0^n = 1 + 0 + 0 + ...$ which converges to 1.
- ▶ When x = 1, this power series becomes $\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots$ which converges to $\frac{1}{1-1/2} = 2$.
- When x = 2, this power series becomes ∑_{n=0}[∞] ^{2ⁿ}/_{2ⁿ} = 1 + 1 + 1 + ... which diverges since it is a geometric series with r = 1 > 1.
- ▶ Note $\sum_{n=0}^{\infty} \frac{x^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$. This series is always a geometric series with $r = \frac{x}{2}$.
- Therefore this series converges when $\left|\frac{x}{2}\right| < 1$ and diverges if $\left|\frac{x}{2}\right| \ge 1$.
- Therefore this series converges when |x| < 2 and diverges if $|x| \ge 2$.
- Since this series converges only on the interval -2 < x < 2, we say that the **Interval of Convergence** of this series is the interval (-2, 2).

A power series defines a function

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots$$

whose **domain** is the set of all values of x for which the series converges.

Example Let $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{2^n} = 1 + \frac{x}{2} + \frac{x^2}{2^2} + \frac{x^3}{2^3} + \dots$ What is f(0)? What is the domain of f?

•
$$f(0) = 1 + 0 + 0 + 0 + \cdots = 1$$
.

►
$$f(1) = \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{1 - (1/2)} = 2.$$

- The domain of f is all x for which $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$ converges.
- Therefore the domain of f is all x in the interval -2 < x < 2.
- In fact for every value of x in this interval, we can find a formula for f(x) using our knowledge of geometric series.

► For
$$-2 < x < 2$$
, $f(x) = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n = \frac{1}{1 - (x/2)} = \frac{2}{2-x}$.

We cannot always get a formula for a function defined by a power series. We will focus on that problem in subsequent lectures. Today we focus on finding the domain (Interval of convergence) of a power series.

Power Series Centered at a.

Definition A power series in (x - a) or a power series centered at *a* is a power series of the form

$$\sum_{x=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$$

where c_n is a constant for all n.

▶ **Note** that when *x* = *a*, we have

$$\sum_{x=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (a-a) + c_2 (a-a) + c_3 (a-a) + \cdots = c_0$$

and the series converges to c_0 .

- Note also that when a = 0, the power series about a above just becomes a power series about 0 similar to the power series in our original definition and the previous examples.
- That is the power series $\sum_{x=0}^{\infty} \frac{x^n}{2^n}$ is a power series centered around a = 0.

Example

Example The power series below is centered at 1. Use the ratio test to determine the values of x for which the series converges $\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n(n+1)^3}$

For any given value of x, we apply the ratio test to the series $\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n(n+1)^3}.$

► We have
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{|x-1|^{n+1} / (3^{n+1}(n+2)^3)}{|x-1|^n / (3^n(n+1)^3)}$$

= $\lim_{n\to\infty} \frac{|x-1|^{n+1}}{|x-1|^n} \frac{3^n(n+1)^3}{3^{n+1}(n+2)^3} = \lim_{n\to\infty} \frac{|x-1|^{n+1}}{|x-1|^n} \frac{3^n}{3^{n+1}} \frac{(n+1)^3}{(n+2)^3}$
= $\lim_{n\to\infty} \frac{|x-1|}{3} \left(\frac{n+1}{(n+2)} \right)^3 = \frac{|x-1|}{3} \lim_{n\to\infty} \left(\frac{n+1}{(n+2)} \right)^3 = \frac{|x-1|}{3}$

- ▶ Since we are using the ratio test, we conclude that the series converges if $\frac{|x-1|}{3} < 1$, it diverges if $\frac{|x-1|}{3} > 1$ and the test is inconclusive when $\frac{|x-1|}{3} = 1$.
- ▶ That is, the series converges if |x 1| < 3, that is -3 < x 1 < 3. Adding 1 to both sides, we see this is equivalent to -2 < x < 4.
- ▶ The series diverges if $\frac{|x-1|}{3} > 1$ or |x-1| > 3, that is x-1 > 3 or x-1 < -3. Therefore the series diverges when x < -2 or x > 4.

• The test is inconclusive when $\frac{|x-1|}{3} = 1$, that is when x = -2 or x = 4.

Example continued

Example The power series below is centered at 1. Use the ratio test to determine the values of x for which the series converges $\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n(n+1)^3}$

- We concluded the series converges if -2 < x < 4.
- The series diverges if x < -2 or x > 4.
- The test is inconclusive when x = -2 or x = 4.
- We treat these two cases separately.
- ▶ When x = -2, the series becomes $\sum_{n=0}^{\infty} \frac{(-2-1)^n}{3^n(n+1)^3} = \sum_{n=0}^{\infty} \frac{(-3)^n}{3^n(n+1)^3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^3}$. This series converges absolutely, since $\sum_{n=0}^{\infty} \frac{1}{(n+1)^3}$ converges by the limit comparison test, comparing with the p-series $\sum_{n=1}^{\infty} \frac{1}{n^3}$.
- ▶ When x = 4, the series becomes $\sum_{n=0}^{\infty} \frac{(4-1)^n}{3^n(n+1)^3} = \sum_{n=0}^{\infty} \frac{(3)^n}{3^n(n+1)^3} = \sum_{n=0}^{\infty} \frac{1}{(n+1)^3}$ which converges by the limit comparison test, comparing with the p-series $\sum_{n=1}^{\infty} \frac{1}{n^3}$.
- ▶ Therefore, this series converges for x in the closed interval [-2,4] and diverges otherwise.

Radius of Convergence, Interval of Convergence

Theorem For any power series $\sum_{n=0}^{\infty} c_n (x-a)^n$, there are only 3 possibilities for the the values of x for which the series converges :

- 1. The series converges only when x = a.
- 2. The series converges for all x.
- 3. There is a positive number R such that the series converges if |x a| < Rand diverges if |x - a| > R. (In previous example R = 3, series converged when |x - 1| < 3 and diverged when |x - 1| > 3.)
- ▶ **Definition** The **Radius of convergence (R.O.C.)** of the power series is the number *R* in case 3 above.

In case 1, the R.O.C. is 0 and in case 2, the R.O.C. is $\infty.$

- We see that the power series ∑_{n=0}[∞] c_n(x − a)ⁿ always converges within some interval centered at a and diverges outside that interval. The **Interval of Convergence (I.O.C.)** of a power series is the interval that consists of all values of x for which the series converges.
 - ▶ In case 1 above, the interval of convergence is a single point {*a*},
 - In case 2 above the interval of convergence is $(-\infty, \infty)$.
 - In case 3 above the interval of convergence may be

$$(a - R, a + R), [a - R, a + R), (a - R, a + R], [a - R, a + R].$$

Example The power series below is centered at 1.

$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n (n+1)^3}.$$

We used the ratio test to determine that the series converges when |x - 1| < 3and diverges when |x - 1| > 3. Therefore the radius of convergence of this series is 3.

We checked the endpoints of the interval (-2, 4) using the limit comparison test to find that the series converges on the interval [-2, 4] and diverges otherwise.

Therefore the interval of convergence for this series is [-2, 4].

Example Find the interval of convergence and radius of convergence of the following power series:

$$\sum_{n=0}^{\infty}\frac{x^n}{n!},$$

We use the ratio test to determine where the series converges.

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\left|\frac{x^{n+1}}{(n+1)!}\right|}{\left|\frac{x^n}{n!}\right|} = \lim_{n \to \infty} \frac{|x|^{n+1}}{|x|^n} \frac{n!}{(n+1)!}$$
$$= \lim_{n \to \infty} \frac{|x|}{(n+1)} = |x| \lim_{n \to \infty} \frac{1}{(n+1)} = 0$$

► This limit is zero for every value of x. This means that the power series converges for every value of x. Here the radius of convergence is R = ∞ and the Interval of Convergence is (-∞, ∞).

Example

Example Find the interval of convergence and radius of convergence of the following power series: $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{2n+1}.$

$$\blacktriangleright \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\left| \frac{(-1)^{n+1} x^{n+1}}{2(n+1)+1} \right|}{\left| \frac{(-1)^n x^n}{2n+1} \right|} = \lim_{n \to \infty} \frac{|x|(2n+1)}{(2n+3)} =$$

|x| lim_{n→∞} (cn+2)/(2n+3) = |x|.
By the ratio test, this series converges if |x| < 1 and diverges if |x| > 1. The Radius of Convergence is R = 1.

- ► To determine the I.O.C., we check the endpoints of the interval |x| < 1 or -1 < x < 1 giving x in (-1, 1).</p>
- At x = 1: $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n 1^n}{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$. This converges by the alternating series test, since $\lim_{n\to\infty} \frac{1}{2n+1} = 0$ and $\frac{1}{2n+1} > \frac{1}{2(n+1)+1}$ for all n > 1.
- ► At x = -1: $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n (-1)^n}{2n+1} = \sum_{n=0}^{\infty} \frac{1}{2n+1}$. This series diverges by comparison to the harmonic series $\sum \frac{1}{n}$ which is known to diverge. We have $\lim_{n\to\infty} \frac{1/(2n+1)}{1/n} = 1/2$; Both diverge.
- ▶ Therefore the Interval of Convergence for this power series is (-1,1].

Example

Example Find the interval of convergence and radius of convergence of the following power series: $\sum_{n=0}^{\infty} \frac{(x+2)^n}{(n+1)4^n}.$

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\left|\frac{(x+2)^{n+1}}{(n+2)^{n+1}}\right|}{\left|\frac{(x+2)^n}{(n+1)^n}\right|} = \lim_{n \to \infty} \frac{|x+2| \cdot (n+1)}{(n+2) \cdot 4} = \frac{|x+2|}{4} \lim_{n \to \infty} \left(\frac{n+1}{n+2}\right) = \frac{|x+2|}{4}.$$

- The ratio test says that this power series converges if $\frac{|x+2|}{4} < 1$ or |x+2| < 4 and the series diverges if |x+2| > 4. The **Radius of Convergence** of this power series is R = 4.
- ► To determine the I.O.C., we check the endpoints of the interval |x + 2| < 4 or -4 < x + 2 < 4 giving x in (-6, 2).
- At x = 2: $\sum_{n=0}^{\infty} \frac{(2+2)^n}{(n+1)4^n} = \sum_{n=0}^{\infty} \frac{(4)^n}{(n+1)4^n} = \sum_{n=0}^{\infty} \frac{1}{n+1}$ which diverges by (limit) comparison with the harmonic series.
- At x = -6: $\sum_{n=0}^{\infty} \frac{(-6+2)^n}{(n+1)4^n} = \sum_{n=0}^{\infty} \frac{(-4)^n}{(n+1)4^n} = \sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{(n+1)4^n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ which converges by the alternating series test.
- ▶ Therefore the Interval of Convergence of this series is [-6,2).