Power Series

Definition A Power Series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots
$$

where x is a variable, the c_{n} 's are constants called the coefficients of the series.
Example We already know a lot about the power series
$\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\ldots$.

- When $x=0$, this power series is the series $\sum_{n=0}^{\infty} 0^{n}=1+0+0+\ldots$ which converges to 1 .
- When $x=\frac{1}{4}$, this power series becomes $\sum_{n=0}^{\infty} \frac{1}{4^{n}}=1+\frac{1}{4}+\frac{1}{4^{2}}+\ldots$ which converges to $\frac{1}{1-1 / 4}=4 / 3$.
- When $x=2$, this power series becomes $\sum_{n=0}^{\infty} 2^{n}=1+2+2^{2}+\ldots$ which diverges since it is a geometric series with $r=2>1$.
- We see that a power series can converge for some values of x and diverge for others.
- In this case the series $\sum_{n=0}^{\infty} x^{n}$ converges if $|x|<1$ and diverges if $|x| \geq 1$, since it is a geometric series with $r=x$.

Example: $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$

Example Lets see what we can say about the power series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}=1+\frac{x}{2}+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{2^{3}}+\ldots
$$

- When $x=0$, this power series is the series $\sum_{n=0}^{\infty} 0^{n}=1+0+0+\ldots$ which converges to 1 .
- When $x=1$, this power series becomes $\sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots$ which converges to $\frac{1}{1-1 / 2}=2$.
- When $x=2$, this power series becomes $\sum_{n=0}^{\infty} \frac{2^{n}}{2^{n}}=1+1+1+\ldots$ which diverges since it is a geometric series with $r=1>1$.
- Note $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}=\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$. This series is always a geometric series with $r=\frac{x}{2}$.
- Therefore this series converges when $\left|\frac{x}{2}\right|<1$ and diverges if $\left|\frac{x}{2}\right| \geq 1$.
- Therefore this series converges when $|x|<2$ and diverges if $|x| \geq 2$.
- Since this series converges only on the interval $-2<x<2$, we say that the Interval of Convergence of this series is the interval $(-2,2)$.

Power series as functions

A power series defines a function

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots
$$

whose domain is the set of all values of x for which the series converges.
Example Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}=1+\frac{x}{2}+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{2^{3}}+\ldots$
What is $f(0)$? What is the domain of f ?

- $f(0)=1+0+0+0+\cdots=1$.
- $f(1)=\sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots=\frac{1}{1-(1 / 2)}=2$.
- The domain of f is all x for which $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$ converges.
- Therefore the domain of f is all x in the interval $-2<x<2$.
- In fact for every value of x in this interval, we can find a formula for $f(x)$ using our knowledge of geometric series.
- For $-2<x<2, f(x)=\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}=\frac{1}{1-(x / 2)}=\frac{2}{2-x}$.
- We cannot always get a formula for a function defined by a power series. We will focus on that problem in subsequent lectures. Today we focus on finding the domain (Interval of convergence) of a power series.

Power Series Centered at a.

Definition A power series in $(x-a)$ or a power series centered at a is a power series of the form

$$
\sum_{x=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots
$$

where c_{n} is a constant for all n.

- Note that when $x=a$, we have

$$
\sum_{x=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(a-a)+c_{2}(a-a)+c_{3}(a-a)+\cdots=c_{0}
$$

and the series converges to c_{0}.

- Note also that when $a=0$, the power series about a above just becomes a power series about 0 similar to the power series in our original definition and the previous examples.
- That is the power series $\sum_{x=0}^{\infty} \frac{x^{n}}{2^{n}}$ is a power series centered around $a=0$.

Example

Example The power series below is centered at 1 . Use the ratio test to determine the values of x for which the series converges $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{3^{n}(n+1)^{3}}$

- For any given value of x, we apply the ratio test to the series $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{3^{n}(n+1)^{3}}$.
- We have $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|^{n+1} /\left(3^{n+1}(n+2)^{3}\right)}{|x-1|^{n} /\left(3^{n}(n+1)^{3}\right)}$
$=\lim _{n \rightarrow \infty} \frac{|x-1|^{n+1}}{|x-1|^{n}} \frac{3^{n}(n+1)^{3}}{3^{n+1}(n+2)^{3}}=\lim _{n \rightarrow \infty} \frac{|x-1|^{n+1}}{|x-1|^{n}} \frac{3^{n}}{3^{n+1}} \frac{(n+1)^{3}}{(n+2)^{3}}$
$=\lim _{n \rightarrow \infty} \frac{|x-1|}{3}\left(\frac{n+1}{(n+2)}\right)^{3}=\frac{|x-1|}{3} \lim _{n \rightarrow \infty}\left(\frac{n+1}{(n+2)}\right)^{3}=\frac{|x-1|}{3}$.
- Since we are using the ratio test, we conclude that the series converges if $\frac{|x-1|}{3}<1$, it diverges if $\frac{|x-1|}{3}>1$ and the test is inconclusive when $\frac{|x-1|}{3}=1$.
- That is, the series converges if $|x-1|<3$, that is $-3<x-1<3$. Adding 1 to both sides, we see this is equivalent to $-2<x<4$.
- The series diverges if $\frac{|x-1|}{3}>1$ or $|x-1|>3$, that is $x-1>3$ or $x-1<-3$. Therefore the series diverges when $x<-2$ or $x>4$.
- The test is inconclusive when $\frac{|x-1|}{3}=1$, that is when $x=-2$ or $x=4$.

Example continued

Example The power series below is centered at 1. Use the ratio test to determine the values of x for which the series converges $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{3^{n}(n+1)^{3}}$

- We concluded the series converges if $-2<x<4$.
- The series diverges if $x<-2$ or $x>4$.
- The test is inconclusive when $x=-2$ or $x=4$.
- We treat these two cases separately.
- When $x=-2$, the series becomes
$\sum_{n=0}^{\infty} \frac{(-2-1)^{n}}{3^{n}(n+1)^{3}}=\sum_{n=0}^{\infty} \frac{(-3)^{n}}{3^{n}(n+1)^{3}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{3}}$. This series converges absolutely, since $\sum_{n=0}^{\infty} \frac{1}{(n+1)^{3}}$ converges by the limit comparison test, comparing with the p -series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$.
- When $x=4$, the series becomes
$\sum_{n=0}^{\infty} \frac{(4-1)^{n}}{3^{n}(n+1)^{3}}=\sum_{n=0}^{\infty} \frac{(3)^{n}}{3^{n}(n+1)^{3}}=\sum_{n=0}^{\infty} \frac{1}{(n+1)^{3}}$ which converges by the limit comparison test, comparing with the p -series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$.
- Therefore, this series converges for x in the closed interval $[-2,4]$ and diverges otherwise.

Radius of Convergence, Interval of Convergence

Theorem For any power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, there are only 3 possibilities for the the values of x for which the series converges :

1. The series converges only when $x=a$.
2. The series converges for all x.
3. There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$. (In previous example $R=3$, series converged when $|x-1|<3$ and diverged when $|x-1|>3$.)

- Definition The Radius of convergence (R.O.C.) of the power series is the number R in case 3 above.
In case 1, the R.O.C. is 0 and in case 2, the R.O.C. is ∞.
- We see that the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ always converges within some interval centered at a and diverges outside that interval. The Interval of Convergence (I.O.C.) of a power series is the interval that consists of all values of x for which the series converges.
- In case 1 above, the interval of convergence is a single point $\{a\}$,
- In case 2 above the interval of convergence is $(-\infty, \infty)$.
- In case 3 above the interval of convergence may be

$$
(a-R, a+R), \quad[a-R, a+R), \quad(a-R, a+R], \quad[a-R, a+R] .
$$

Previous Example

Example The power series below is centered at 1.

$$
\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{3^{n}(n+1)^{3}}
$$

We used the ratio test to determine that the series converges when $|x-1|<3$ and diverges when $|x-1|>3$. Therefore the radius of convergence of this series is 3 .
We checked the endpoints of the interval $(-2,4)$ using the limit comparison test to find that the series converges on the interval $[-2,4]$ and diverges otherwise.
Therefore the interval of convergence for this series is $[-2,4]$.

Example

Example Find the interval of convergence and radius of convergence of the following power series:

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

- We use the ratio test to determine where the series converges.
$-\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left|\frac{x^{n+1}}{(n+1)!}\right|}{\left|\frac{x^{n}}{n!}\right|}=\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{|x|^{n}} \frac{n!}{(n+1)!}$
$=\lim _{n \rightarrow \infty} \frac{|x|}{(n+1)}=|x| \lim _{n \rightarrow \infty} \frac{1}{(n+1)}=0$
- This limit is zero for every value of x. This means that the power series converges for every value of x. Here the radius of convergence is $R=\infty$ and the Interval of Convergence is $(-\infty, \infty)$.

Example

Example Find the interval of convergence and radius of convergence of the following power series: $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{2 n+1}$.
$-\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left.\frac{(-1)^{n+1} x^{n+1}}{2(n+1)+1} \right\rvert\,}{\left|\frac{(-1)^{n} x^{n}}{2 n+1}\right|}=\lim _{n \rightarrow \infty} \frac{|x|(2 n+1)}{(2 n+3)}=$ $|x| \lim _{n \rightarrow \infty} \frac{(2 n+1)}{(2 n+3)}=|x|$.

- By the ratio test, this series converges if $|x|<1$ and diverges if $|x|>1$. The Radius of Convergence is $R=1$.
- To determine the I.O.C., we check the endpoints of the interval $|x|<1$ or $-1<x<1$ giving x in $(-1,1)$.
- At $x=1: \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{n}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$. This converges by the alternating series test, since $\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$ and $\frac{1}{2 n+1}>\frac{1}{2(n+1)+1}$ for all $n>1$.
- At $\quad x=-1: \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n}}{2 n+1}=\sum_{n=0}^{\infty} \frac{1}{2 n+1}$. This series diverges by comparison to the harmonic series $\sum \frac{1}{n}$ which is known to diverge. We have $\lim _{n \rightarrow \infty} \frac{1 /(2 n+1)}{1 / n}=1 / 2$; Both diverge.
- Therefore the Interval of Convergence for this power series is $(-1,1]$.

Example

Example Find the interval of convergence and radius of convergence of the following power series: $\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{(n+1) 4^{n}}$.
$-\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left|\frac{(x+2)^{n+1}}{(n+2) 4^{n+1}}\right|}{\left|\frac{(x+2)^{n}}{(n+1)^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{|x+2| \cdot(n+1)}{(n+2) \cdot 4}=$
$\frac{|x+2|}{4} \lim _{n \rightarrow \infty}\left(\frac{n+1}{n+2}\right)=\frac{|x+2|}{4}$.

- The ratio test says that this power series converges if $\frac{|x+2|}{4}<1$ or $|x+2|<4$ and the series diverges if $|x+2|>4$. The Radius of Convergence of this power series is $R=4$.
- To determine the I.O.C., we check the endpoints of the interval $|x+2|<4$ or $-4<x+2<4$ giving x in $(-6,2)$.
- At $x=2: \quad \sum_{n=0}^{\infty} \frac{(2+2)^{n}}{(n+1) 4^{n}}=\sum_{n=0}^{\infty} \frac{(4)^{n}}{(n+1) 4^{n}}=\sum_{n=0}^{\infty} \frac{1}{n+1}$ which diverges by (limit) comparison with the harmonic series.
- At $x=-6: \quad \sum_{n=0}^{\infty} \frac{(-6+2)^{n}}{(n+1) 4^{n}}=\sum_{n=0}^{\infty} \frac{(-4)^{n}}{(n+1) 4^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n}}{(n+1) 4^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$ which converges by the alternating series test.
- Therefore the Interval of Convergence of this series is $[-6,2)$.

